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1. INTRODUCTION 

An independent set in a graph is a set of vertices, no two of which are 
adjacent. A maximal independent set is an independent set that is not 
properly contained in any other independent set. Answering a problem 
raised by Valiant in [Va] (see also Cook [Co]), Karp and Wigderson [KW] 
described a fast parallel algorithm which accepts as input a graph G with n 
vertices and ) E 1 edges and produces a maximal independent set of vertices. 
On an EREW-PRAM (PRAM without concurrent write or read) their 
algorithm executes in time O((log n)4) and requires O((n/log n)3) 
processors. 

Here we describe a simple randomized (Las Vegas) algorithm for the 
above problem. Its expected running time on a CRCW-PRAM with 
0( 1 Eld,,) processors is O(log n) where d,, is in the maximum degree in 
the graph. Our algorithm can also be implemented on an EREW-PRAM 
with ] E ] processors and expected running time O(log’n). This latter result 
was independently obtained by M. Luby who subsequently showed that his 
algorithm can be made deterministic without loss of EREW-PRAM time 
EL]. We are unable to make our faster CRCW-PRAM algorithm determin- 
istic and leave this as an open problem. 

Applying the algorithm to the line graph of a graph G, one obtains a 
similarly efficient parallel algorithm for finding a maximal matching in G. 
An equally time-efficient algorithm for this problem appears in [II] which 
requires only 0( I E ] ) processors. 

Another immediate consequence of any maximal independent set al- 
gorithm is a similarly efficient algorithm for coloring a graph with d,, + 1 
colors. The following well-known trick, mentioned in [L] (cf. [Lov, Exercise 
9.6]), provides a reduction. It is easy to see that d,, + l-colorings of the 
graph G are in one-to-one correspondence with the maximal independent 
sets of the Cartesian product of G by the complete graph on d,, + 1 
vertices. (This graph consists of d,, + 1 copies of G with edges between 
all pairs of corresponding points added.) This observation applies to our 
O(log n) Las Vegas CRCW algorithm as well as to Luby’s O(log”n) 
deterministic EREW algorithm. We note that Luby [L] gave a separate, 
similarly time-efficient deterministic EREW algorithm for this coloring 
problem, using fewer processors. 

The paper is organized as follows. After introducing some notation in 
Section 2 we describe the algorithm in Section 3. In Section 4 we prove the 
combinatorial lemmas that guarantee that the expected number of “phases” 
of our algorithm is O(log n). This leads to a trivial implementation of our 
algorithm on an EREW-PRAM with expected running time O(log’n). In 
Section 5 we show how to implement our algorithm on a CRCW-PRAM 
with expected running time O(log n). Motivated by the results of [KW] and 
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[L], in Section 6 we describe a general technique, due to A. Joffe [Jo], to 
convert any Monte Carlo algorithm that uses d-wise independent random 
choices into a deterministic parallel algorithm without loss of time and a 
polynomial increase in the number of processors for any constant d. We 
mention several combinatorial applications in Section 7. 

2. NOTATION 

For every graph H, V(H) is the set of vertices of H and E(H) is the set 
of its edges. Let G = (V, E) be a graph. For X s V, N(X) is the set of all 
neighbours of vertices in N, i.e., N(X)={u=V: UUEE for some 
u E X}. Thus X c V is a maximal independent set of G if X n N(X) = 0 

and X U N(X) = V. If K c V the induced subgraph of G on K, denoted 
simply by K, is a subgraph on the set of vertices K with edge set 
E(K) = {uw1u, w E K, uw E E}. For u E K, dK(u) is the degree of the 
vertex u in the subgraph K. 

3. THE ALGORITHM 

As in [KW], our algorithm consists of phases. In each phase an indepen- 
dent set S of an induced subgraph H of G is added to the current 
independent set and S U N(S) is deleted from H. Starting with H = G 
and ending when H = 0 we get a maximal independent set. As H is by 
definition an induced subgraph of G, it is uniquely determined by its vertex 
set V(H). 

The following Procedure IN describes our algorithm for constructing a 
maximal independent set of the graph G = (V, E). It refers to another 
procedure, IN(H), to be described subsequently. 

Procedure IN 
begin 
It 0, V(H) + V. 

while V(H) # 0 do begin 
S + IN(H) 
I/(H) + V(H) - (S U NH(S)) 
I+IlJS 

end 
end 

Each execution of the body of the while loop is a phase of the algorithm. 
The following procedure selects an independent set S of H and is used in 
each phase of IN. 
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Procedure IN(H). 
begin 

for each vertex u of H do in parallel 
if dH(u) = 0 then mark u. 

else mark u with probability l/d,(u). 
for each edge uu of H do in parallel 

if both u and u are marked erase randomly exactly one of the 
marks: 
that of u with probability dH( u)/(d&u) + dH(u)) 
else that of u. 

S + set of vertices that remain marked. 
end 

All the random choices in IN are independent. One can easily check that 
Procedure IN(H) always produces an independent set S of H and hence 
the algorithm eventually finds a maximal independent set of G. In the next 
section we show that the expected number of edges deleted from H in each 
phase is !2( IE(H)(). Thus the expected number of phases is O(log n). 

4. THE EXPECTED NUMBER OF PHASES 

In this section we show that the expected number of edges deleted from 
H in each phase of the algorithm is Q( (E( H)I). Put H = (V, E). For 
u E V let us abbreviate dH( u) by d(u). A vertex u E V is bad if the degree 
of at least : of its neighbors is greater than its own degree. A vertex is good 
if it is not bad. An edge is bad if both its endpoints are bad. Otherwise it is 
good. We will show that a constant fraction of the edges of H are good, and 
that the probability that a good edge is deleted during a phase is at least 
some positive constant. These two facts imply that the expected number of 
deleted edges is 52( ] E I), as desired. The following easy lemma was essen- 
tially proved in [II]. 

LEMMA 4.1. Suppose u E V is a good vertex of degree d > 0. Then the 
probability that some neighbor of u receives a mark during the procedure 
IN(H) is 2 1 - ew113. 

Proof: By definition u has k > d/3 neighbors ui, . . . , uk with dj = 
d(uj) I d (j= l,..., k). Prob(some neighbor of u is marked) 2 1 - 
Prob(no ui is marked) = 1 - ni”p,(l - l/dj) L 1 - (1 - l/d)“ 2 1 - 
e . -l/3 q 

LEMMA 4.2. Suppose u E V has degree d > 0. Then, in the execution of 
1N( H), Prob(u E Slu was marked) L l/e, i.e., if u received a mark during 
IN(H) then with probability 2 l/e it remains marked at the end of IN( H). 
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Proof. Let ui, ul,. . . , ud be the neighbors of u, with dj = d(uj). For 
1 2 j r d let Aj denote the event that uj was marked and that when the 
edge uuj was considered the mark of u was erased. Clearly, these d events 
are independent. Hence 

Prob( u E S 1 u was marked) = Prob (no Aj occurs 1 u was marked) 

COROLLARY 4.3. Suppose u E V is a good vertex of degree d > 0. Then 
its probability to be deleted in this phase is 2 (1 - e-‘13)/e. 

Proof: Let ui, . . . , ud be the neighbors of u. Then 

Prob( u is deleted) 

2 Prob( uj E S for some j) 

= ,$i Prob( uj was marked and ui, . . . , ujpl were not) 

XProb(ujESlujwasmarkedandu,,...,uj-i werenot) 

d 

2 c Prob( uj was marked and ui, . . . , uj-i were not) 
j-1 

X Prob( uj E S( uj was marked) 

1 d 
2 - c Prob( uj was marked and q, . . . , uj- i were not) 

e j=l 

= iProb( uJ was marked for some j) 2 f . (1 - e-1/3) 

as needed. 

The last two inequalities follow from Lemmas 4.1 and 4.2. 0 

The authors of [II] proved that any graph with /El edges has at least 
$1 E 1 good edges. The following is a somewhat simpler proof of a slightly 
better result. 
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LEMMA 4.4. Let H = (V, E) be a graph. Then the number of good edges 
of H is > $?I. 

Proof Direct each edge of H from the smaller degree endpoint to the 
higher degree endpoint (arbitrarily if these degrees equal). For A, C c V let 
E(A, C) be the set of all edges from a vertex of A to a vertex of C. For 
u E V let d+(o) and d-(u) be the number of edges emanating from and 
entering, respectively, u. Let B c V be the set of all bad vertices and let 
G= V- BbethesetofallgoodonesNotethatforuE Bd+(u)k 2d-(u). 
One can easily check that 

W(B, @I + IE(B, G)l + IE(G, @I 
= c (d+(u) + d-(u)) 

UEB 

I 3 c (d+(u) - d-(u)) 
UEB 

= 3u&(d(u) - d+(u)) 

= 3(IE(B, G)l - lE(G, @I) 

I 3(1B(B, G)l + lE(G, @I). 

Thus IE(B, B)I I IE(B,G)I + IE(G, B)I, i.e., at most half of the edges 
of H are bad, as claimed. 0 

COROLLARY 4.5. The expected number of deleted edges in a phase is 
2 (1/2e)(l - e-‘/3)IE(H)I. H ence the expected number of phases of the 
algorithm is O(log I E( G) I). 

Proof: In each phase the number of good edges is r 4 (E(H) 1, by 
Lemma 4.4. Each such edge is incident with a good vertex, which is deleted 
with probability 2 l/e(l - ee113). Hence the expected number of deleted 
edges is 2 1/2e(l - e-‘/3)IE(H)I. Since no more than IE(H)I edges can 
be deleted this shows that, say, at least & IE( H)ledges are deleted with 
probability 2 &. As is easily checked this implies that the expected 
number of phases needed to delete all edges is O(log( E(G) I). One more 
phase will suffice then to add all the remaining isolated vertices of H to the 
independent set and complete the algorithm. 0 

5. I~~PLEMENTATI~N 

Recall than n = IV(G)l, IEJ = (E(G)/. Is is straightforward to imple- 
ment our algorithm on an EREW-PRAM with 0( I El) processors and 
running time O(log n) = O(log{ El) for each phase. In this section we show 
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how to implement the algorithm (in fact, a slightly modified version of it) 
on a CRCW-PRAM with running time U(1) for each phase. A basic tool 
here is the Random Choice Operation (RCO) introduced in [II]; this is the 
operation of choosing randomly a nonzero entry of a nonzero boolean 
vector, where all nonzero entries have the same probability to the chosen, 
and with a small probability, no entry is chosen. 

Let x be a boolean vector of length d. The RCO on x is implemented in 
a CRCW-PRAM with d processors pi,. . . , pd and constant time. Note 
that one concurrent write is enough to check that x is not identically zero. 

RCO (see [II]): 

(1) entry := nil 

(2) Each processor pi chooses at random a number rj, 1 s r, I d. 

(3) If xri # 0 then entry := ri. 

Note that here we use the common model [Go] that in case of a write 
conflict one of the processors (say the lowest numbered) succeeds. How- 
ever, by increasing the number of processors we can implement RCO in the 
more restrictive model in which a concurrent write succeeds only if all the 
processors try to write the same content. This can be done by finding 
the lowest numbered processor pi for which x,~ # 0 and putting entry := ri. 
We omit the details. 

The RCO succeeds if it chooses an r such that x, = 1. It fails if for all i, 
x,, = 0. 

We need the following easy observation. 

OBSERVATION 5.1. Let x be a boolean vector of length d with d, > 0 
nonzero entries. Then the probability that the RCO on x succeeds is 2 1 - 
epdl. 

Proof. Prob(RC0 on x fails) = (1 - dl/d)d I eCdl. 0 

The only difficulty in implementing a phase of the algorithm in a 
CRCW-PRAM in constant time is the implementation of the two probabil- 
ity choices in the procedure IN. For each vertex v of degree d in the 
original graph G, the first choice is a random choice with probability 
l/d,(v), where 1 s dH(v) I d. This is done by applying RCO to the 
vector of edges incident with v, where zero denotes an edge that had already 
been removed. Once an edge is chosen we check if it is the lowest numbered 
edge (as we already mentioned, minimum can be easily found in constant 
time) and in case it is we mark v. Note that because of the failure 
probability, v is in fact marked with a slightly smaller probability than 
l/d,(o). However, by Observation 5.1 

1/2d,(v) I Prob( v is marked) I l/d, ( v ) 
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and the events that distinct vertices are marked are independent. One can 
easily check that the assertion of Lemma 4.1 (with a different constant) still 
holds. 

To implement the second random choice in IN, we apply, for each edge 
t(u of H with both sides marked, an RCO on the concatenation of the 
vector of edges incident with u and the vector of edges incident with u. If 
our RCO chooses a nonzero entry of the first vector we erase the mark of u, 
otherwise (even if it fails) we erase the mark of U. Again, by Observation 
5.1, 

Prob(the mark of tl is erased) I 
d&) 

4.h) + d&d 
+ e-(4f(U)+dH(U)) 

2&(U) 

s d&) + dHW 

and certainly 

Prob(the mark of u is erased) I 2d,( u)/( dH( u) + dH( u)). 

A close look at the proof of Lemma 4.2 reveals that its assertion (with a 
different constant) still holds under these conditions. Hence the expected 
number of phases of this slightly modified algorithm is still O(log]E(G)]). 
Clearly, now each phase requires constant time (on a CRCW-PRAM). The 
greatest demand for processors occurs during the RCO’s on the edges. Here 
each edge uu requires d,(u) + d,(u) processors. The total number of 
processors is thus 0(X ,,,,di(u)) = O(IE(G)Jd,,) where d,, is the 
maximum degree in G. 

6. CONVERTING RANDOMIZED ALGORITHMS INTO DETERMINISTIC ONES 

Karp and Wigderson [KW] introduced a method to convert certain 
randomized algorithms into deterministic ones. The method is based on the 
fact that the analysis of their randomized algorithm depends only on 
pairwise rather than fully independent random choices. 

The objective of this section is to generalize the Karp-Wigderson tech- 
nique to situations where d-wise independence of the random choices is 
required for some constant d. 

The basic idea, as in [KW], is to replace an exponentially large sample 
space by one of polynomial size. Clearly, if a random variable over such a 
small sample space takes a certain value with positive probability then we 
can actually find such a point in the sample space deterministically without 
loss of time using a polynomial number of parallel processors. 
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It was observed long ago that in order to construct pairwise independent 
random variables, exponentially smaller sample spaces suffice compared to 
what is required for full independence. Lancaster [Lan] credits an example 
in Bernstein’s textbook [Ber] for the basic idea and constructs n - 1 
pairwise independent random variables on a sample space of size n for 
every n. For further development, cf. [G’Br]. 

A. Joffe [Jo] generalized this result to d-wise independence. His remark- 
ably simple construction uses finite fields. The variables he constructs are 
uniformly distributed over a sample space of prime power order. We shall 
see that Joffe’s idea can be generalized so that the distributions of the 
variables approximate given probability distributions. We also consider the 
problem, how much smaller the sample space could be made. Using BCH 
codes, we obtain a tight bound for the case when each variable is uniformly 
distributed over a set of two values. 

These results can be used to turn randomized algorithms whose analysis 
depends on d-wise independence into deterministic algorithms at a cost 
of essentially raising sequential time or number of parallel processors to 
power d. 

Mostly independently of our work, Joffe’s method has recently been used 
or rediscovered by several authors in computer science ([ACGS], [AW], 
[An], [Be], [CG], [CGHFRS], [L]). The basic construction remained the 
same. We believe it is worth stating the conclusions in the generality given 
below. 

Luby [L] uses the method for d = 2, and applies it to his EREW-PRAM 
algorithm for the maximal independent set problem. 

Our analysis of the algorithm presented in this paper requires full 
independence of the random choices. We note that the analysis of the 
EREW-PRAM implementation can be changed, along the lines of [L], into 
one depending on pairwise independent choices, thereby reproducing Luby’s 
deterministic O(log*n) result (with a slightly different algorithm). Unfor- 
tunately, however, we are unable to turn our O(log n) CRCW-PRAM 
algorithm into a deterministic one. 

After these comments, we turn to the description of the method. 

DEFINITION 6.1. Let 5 and t’ be two random variables. We define the 
distance between the distributions of 5 and 5’ to be dist(5, 5’) = 
supx E d I ProWs‘ -z x) - Prob(l’ < x)]). 

DEFINITION 6.2. We call a finite probability space (a, P) uniform if 
each elementary event (element of the sample space Q) has the same 
probability 1/ ] 0 1. 

We shall say that a random variable is combinatorial if its range consists 
of a finite numer of rational numbers each taken with rational probability. 
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The distributions of such variables can be given explicit& by listing the 
values and the corresponding probabilities. 

The following result achieves the goal outlined above. 

PROPOSITION 6.3. Let tl, . . . , t, be random variables. Let further q be a 
prime power, q 2 n and d 2 1. Then there exists a uniform probability space 
(a, P) over a sample space of size InI = qd and random variables <i,. . . , 5; 
over (S2, P) such that dist(&, I;) I 1/2q (i = 1, . . . , n) and the 5; are 
d-wise independent. Moreover, if the ti are combinatorial in the above sense 
and are explicitly given then for fixed d the 5; can be evaluated in logspace. 

The last sentence assumes that Q is identified with the integers between 1 
and qd; q is part of the input and is given in unary. 

We remark that in the space to be constructed all probabilities 
Prob([; = x) will be of the form a/q where a is an integer. In particular, if 
Prob (5 = x) is a number of this form, then Prob(c = x) = Prob(<’ = x). 

Proof. Let I;;(x) = Prob(& < x) be the distribution function of 5,. Let 
us approximate Fi by a function Gi defined as follows. 

Clearly, Gi is again a probability distribution function and the distance 
between Gi and 4. is at most l/29. 

Let xi1 < - * * < xi*, be the points of discontinuity of Gi. Clearly, r, I q. 
Let aij = G(xij + 0) - G(xij). We have 

i aij = 1. 
j=l 

(6.2) 

Let now F = GF(q) = { fi, . . . , j,} be the field of q elements. Let us 
associate with each & a partition F = UjAij where lAijl = qaij. 

Our sample space 52 will be the set of qd polynomials of degree I d - 1 
over F. We define the random variables I; over the uniform space on !J as 
follows. 

For p E Q, let t;(p) = xii if p(h) E Aij. Clearly, Prob((( = xii) = aij. 
Hence the distribution function of 6; is Gi and consequently dist(&, t() I 
1/2q. The fact that the 6; so constructed are d-wise independent follows 
immediately from the first result of interpolation theory: a polynomial 
p E Q is uniquely determined by fixing its value at d different places. 

The claim of efficient evaluation of the c; is clearly justified. q 

Naturally, the question arises whether or not we could compress the 
sample space even further. The following simple observation shows that 
under quite general circumstances, no such compression is possible. 
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If d independent random variables ti are to take at least 4 different 
values each with positive probability then for suitable functions f., the 
random variables vi = fi(&) take at least q different prime numbers as 
values and disjoint sets of primes for distinct variables. Therefore their 
product takes at least qd values with positive probability. This is not 
possible over a sample space of size less than qd. 

This observation still leaves the possibility of considerable improvement 
when the variables take only a small number of distinct values, less than n 
say. In this case in Proposition 6.3 we may choose q to be less than 2n and 
our bound is ] Q 1 = 0( nd). The following proposition shows that this result 
is not far from best possible; even if the variables take only two values, at 
least about the square root of this number is necessary. A variable is almost 
constant if it takes a single value with probability 1. 

Let m( n, d) denote the following sum of binomial coefficients: 

if d is even 

m(n, d) = 
n-1 

(d - 1)/z 
if d is odd. 

PROPOSITION 6.4. Assume that the random variables tl,. . . , 5, over the 
sample space Q are d-wise independent and not almost constant. Then 
I!21 2 m(n, d). 

A similar result was found independently by [CGHFRS]. Their “Uni- 
form Projection Lemma” is equivalent to the special case of Proposition 6.4 
when we restrict the probability space to be uniform and the [, to be 0 or 1 
with probability i each. 

Proof. We may assume that each variable has zero expected value. 
(Other wise we replace & by ti - E(E,).) For any subset S of (1,. . . , n } let 
(Ye = I-Ii,&. By the d-wise independence of the &. 

Gw%-) = 
i 

positive if S = Tand ISI 2 d; 
0 ifS#Tand]SUTl Id. 

Let now S,, . . . , S,,, be subsets of (1,. . . , n} such that ]Si U sjl 5 d for 
every i, j, where m = m(n, d). (Take all sets of size I d/2 and, if d is odd, 
add those (d + l)/Zsets containing element 1.) 

We claim that the functions osi (i = 1,. . . , m) are linearly independent 
(in the function space R*). This implies the inequality Ifi] 2 m stated in 
the proposition. 
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Let 01~ = as.. 
Then for any j, 

Suppose some linear combination cp = Xy=i aiq is zero. 

0 = E(cpcYj) = i~laiE(oiaj) = UjE(ol,). 

Consequently all coefficients aj are zero. q 

For fixed d, Proposition 6.4 shows that any probability space with n 
d-wise independent (not almost constant) random variables has size 
P(n . Ld121) Using the binary BCH code we show that this is best possible in 
the case when each ti takes only two values, with probability $ each. 

PROPOSITION 6.5. Suppose n = 2k - 1 and d = 2t + 1 I n. Then there 
exists a uniform probability space Q of size 2(n + 1)’ and d-wise independent 
random uariabIes E1, ,. . . , 5, over Q each of which takes the ualues 0 and 1 
with probability $. 

The space and the variables are explicitly constructed, given a representa- 
tion of the field F = GF(n + 1) as a k-dimensional algebra over GF(2). 

Prooj: Let xi,. . . , x, be the n nonzero elements of F, represented as 
column-vectors of length k over GF(2). Consider the following 1 + kt by n 
matrix over GF(2), 

21-l 
x2 

21-l x3 . . . x2t-1 ” 
: I 

This is the parity check matrix of the (primitive, narrow-sense) binary 
BCH code [MS, Chap. 7.61 of length n and designed distance 2t + 2, 
augmented with a parity check bit. It is well known, that any d = 2t + 1 
columns of H are linearly independent [MS, Chap. 7.6, Theorem 81. 

Let P = {1,2,..., 2(n + 1)‘) and let A = (aij) (i E 9,l <j I n) be the 
(0, I)-matrix whose 2(n + 1)’ = 2kt+1 rows are all linear combinations of 
the rows of H. We endow the sample space Q with uniform probability 
measure. The random variable tj over G will be defined by the formula 
t,(i) = aij (i E P, 1 Ij 5 n). 

To prove that the tj are d-wise independent, we have to show that for 
everyJof up to d columns, the rows of the Isl( by lJ1 matrix A, = (aij)j,, 
take on each of the 2Vl (0, 1)-vectors equally often. This follows im- 
mediately from the fact that the columns of the corresponding submatrix 
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HJ of H are linearly independent and therefore its rows span the space 
GJ’(2)IJ’. •I 

We remark that the matrix A constructed in the proof is an orthogonal 
array of strength d [MS, Chap. 5.5, Theorem 81 and any other orthogonal 
array of strength d can be used to construct d-wise independent random 
variables in a similar fashion. 

7. DETERMINISTIC CONSTRUCTION OF COMBINATORIAL OBJECTS 

Following [KW] we say that a relation R lies in z if there exists a 
deterministic PRAM algorithm that produces for any input x of size n an 
output y with (x, r) E R in time (log n)O@) using no(l) processors. 

In combinatorics, the existence of certain objects is often established by 
proving that random choice leads to the desired object with positive 
probability, If this probability is not negligible then such procedures usually 
yield random polynomial time algorithms to construct the desired object, 
and often they allow parallelism to yield an E search algorithm. 

Using Proposition 6.3 one can show that many of these combinatorial - 
search problems actually belong to NC. Here are four examples. We note 
that even the weaker corollary that these problems thus belong to P is of 
interest since the probabilistic existence proofs usually do not yield this. An 
outstanding open problem is to construct, in polynomial (of n) time, graphs 
with n vertices and with clique and anticlique size O(log n). (An anticlique 
is an independent set.) An old result of ErdBs says that almost all graphs 
satisfy this condition [El. This simple result turned out to be quite a 
triumph of the then new probabilistic method. Ingenious explicit construc- 
tions [F, FWJ yield clique and anticlique sizes of the order of exp c*. 

A. Independent Sets in Sparse Hypergraphs 

A hypergruph X= (V, 4’) is a system d of subsets of. V called edges. &’ 
is d-uniform if every edge has d elements. A set W c V is independent if 
W contains no edge. 

PROPOSITION 7.1. Let LX?= (V, 8) be a d-uniform hypergruph on n = 1 ‘VI 
vertices (d L 2, fixed). Let k = c(n*/lq)“(*-‘) for a suitable constant c. 
Then finding an independent set W of size 2 k is in E. 

Proof: First we show that for k 2 7 and c I $ such a set W always 
exists. Let us construct a random subset R of Y by picking each element of 
V with probability (3k)/n. Let Si denote the indicator variable of the event 
i E R. The size of R is p = IRI = Cyw,, 1,. Clearly, E(p) = 3k, and, 
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assuming the li are pairwise independent, D2( p) = Cy= rD2(li) < 3k. By 
Chebyshev’s inequality we find that 

Prob(lRI I 2k) < 3/k. (7.1) 

For each edge Ej E B, let lj be the indicator of the event E, G R. The 
probability of this event is 

d 

(7.2) 

assuming d-wise independence of our choices. Hence the expected number 
of those Ej contained in R is 

d 

< i. 

(The last inequality will hold if c < l/18.) Therefore 

Prob(zni r k) < :, 

(7.3) 

Consequently, the event C = {Cnj < k and I R 1 2 2k } has probability 
> i - 3/k. But if C holds then removing one point of each Ej contained 
in R from R results in an independent set W such that 1 W( > k. 

This completes the proof of existence and provides an %?? algorithm. 
To make the algorithm deterministic, let n/k < q I 2n/k and select every 
point with equal probability between 3k/n and 4k/n. This way, (7.1) will 
continue to hold, and (7.3) will hold as well if our choices were d-wise 
independent and c I A. By Proposition 6.3, such choices can be accom- 
plished over a uniform probability space of size qd. Using qd n-tuples of 
processors we can try all these choices at once, and event C will hold for at 
least one n-tuple of processors. 0 

B. Large d-Partite Subhypergraph 

F~OPOSITION 7.2. Fix d 2 2 and leLZ= (V, S) be a d-uniform hyper- 
graph. Then the following problem is in NC. Find a partition (V,, . _ . , V,) of 
V such that the number of edges of &’ having precisely one vertex in each class 
5 is at least [Il?ld!/dd]. 

Proof: Let .& denote a random number from the set (1,. . . , d }. Let us 
color vertex i by “color” 6,. Then, assuming the & to be d-wise indepen- 
dent, the probability that a given edge is “good” (has all the colors) is 
d!/d’. The expected number of good edges is IBld!/dd and therefore a 
coloring satisfying the condition exists. 
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Using Proposition 6.3 with 4 > 2d*]&‘] we are able to construct d-wise 
independent random variables & such that the probability that a given edge 
is good as greater than 

d!(‘j-+-Jqo-&)* 
Therefore the expected number of good edges is greater than Jb]d!/& - 
l/2. Hence, with positive probability, it is at least []&Id!/&]. 0 

We remark that Proposition 7.2 remains valid if we omit 1 , ] but we have 
to use q > 2dd+‘lbl. 

C. Ramsey- Type Problems 

PROPOSITION 7.3. The following problem is in E. For fixed k 2 2 color 
the edges of the complete graph on n vertices by 1 colors such that no more than 

0 
k +1 

1 +(;)1- 2 complete k-.&graphs be monochromatic. (The input numbers 
n and 1 are written in unary.) 

Proof Similar to 7.2, with d = (i). We omit the details. 0 

D. Sidon-Subsets of Groups 

Let G be a finite abelian group of odd order. A subset S c G is a Sidon 
subset if all the pairwise sums x + y (x, y E S) are different. 

PROPOSITION 7.4. The following problem is in z. Let G be a finite 
abelian group given by its Cayley table. Let A be a subset of G, I A I = n. Find 
a Sidon subset S c A of size I S( 2 cn1’3. 

Proof This essentially follows from Proposition 7.1. The edges of the 
hypergraph to consider are the quadruples {x1,. . . , x4} where xi E A, 
Xl + x2 = x3 + xq, xi # xi and the triples {x1, x2, x3} where xi E A, 
x1 + x2 = 2x3, xi # xj. A Sidon set is precisely an independent set in this 
hypergraph. We have to choose d = 4. •I 

We remark that some care has to be taken when defining Sidon sets for 
groups of even order (one has to exclude sums of the form x + x = 0) and 
to nonabelian-goups (there are two natural generalizations, cf. [BS]). 
However, the NC algorithm outlined above will in all cases produce Sidon 
sets of size cn113. 

If A = G, clearly no Sidon subset of A will be greater than (2n)l/*. For 
certain subsets, one can guarantee the existence of substantially larger 
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Sidon sets, and in fact one can find such sets quickly in parallel. By a 
reasoning similar to the one above, one can modify arguments from [AE] to 
prove the following. 

PROPOSITION 7.5. The following problem is in z. Let G be a finite 
abelian group given by its Cayley table. Let A be a subset of G, IA 1 = n. 
Suppose that each g E G can be written as a sum of two elements of A in at 
most k distinct ways (k constant). Find a Sidon subset S c A of size 
(S( 2 c,n2’3. 
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